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ABSTRACT: Ramsey-like theorems. Hales-Jewett.

In this note, a coloring is an edge-coloring unless
specified otherwise.

Entrance. (jk: Jeudi, 26 mars, 1985) Let K, denote
the complete graph on n vertices. Let R(n) denote
the n'® Ramsey number , that is, the smallest M
such that if one colors each edge of K either blue or
green, then there must exist a monochromatic sub-

graph isomorphic to K.

Notation. For vertex w in a blue-green graph, let
bV(w) be the set of vertices connected to w by a
blue edge; use gV(w) for those connected to w by
green edges. We thus have vertex degrees

bDeg(w) == [bV(w)| and gDeg(w) == |gV(w)].
Hence bDeg(w) + gDeg(w) = Deg(w).
la: Theorem. Forn=1,2,3,...,

la': R(n+1) < 2[1+ [n—1R(n)]. O

Proof. With M := RhS(1d’), let V denote the vertex
set of Kjs. FTSOC, assume we have edge-colored Ky
so that it has no monochromatic copy of Kj41.

Pick a up € V. WLOGenerality at least half of the

edges from ug are blue. Letting By := bDeg(ug), we
have
M—-17 &

Building a blue complete-subgraph. Pick a ver-
tex u; € bV (ug). The set b1/ (up) \ {u1} can have at
most R(n) — 1 vertices not belonging to b1/ (uy). If
otherwise, then there would be a copy of Kg(,) in our
graph, disjoint from ugy and uy, such that each vertex
in this copy was connected to ug by a blue edge and
to uy by a green edge. This copy would, by hypothe-
sis, contain a monochromatic copy —call it H— of K.
Were H blue, then H LI {ug} is a blue K,,41. Else, H
is green, so HU {uy} is a green K, 4+1. Either is a <.
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Consequently the set b1/ (ug) NV (up) has at least

[0V (wo)| = {wi}| = [R(n) = 1] 22 By —R(n)

many vertices. Pick some ug in bV (ug) N6V (uy). The
same argument shows b1/ (ug) N bV (u1) N bV (ug) has

at least
[Bo = R(n)] —R(n)

many vertices.

Continue. At stage n—1 we will have chosen dis-
tinct vertices ug,uy,...,u,—1. Further, the intersec-
tion of their blue vertex-sets will satisfy

[0V (o) NV(wr) N A DV (g 1)| = By = [n=1]R(n)

and hence be non-empty, by (x). Picking a ver-
tex u, in this intersection, now every pair of vertices
in {ug,uy,...,u,} is connected by a blue edge. 3« ¢

Remark. Values R(1), R(2) and R(3) are 1, 2 and 6

respectively. Using the above theorem, easily

R(n+1) < [n!-2"]. 0

orc colors. 1t we allow W € Zy many col-
ors, then we get a corresponding sequence of Ramsey
numbers R, (n) for n = 1,2,.... Here, Ri(n) = n,
and Ra(-) is another name for R(-).

For each p>1, lump the p colors into two super-
colors consisting each of at most h = [u/2] colors.
Applying R(+) to these two supercolors, implies that

R(n)...)),

where the RhS has [logy(1t)| occurrences of R(-). [

Ru(n) < R(Ra(n)) < R(R(..
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Infinite Ramsey’s Theorem

(jk, Feb1989) Let Ko denote the complete graph on
denumerably many vertices.

1b: Infinite Ramsey's Theorem. Each edge v of
H=(V,E), a Ky graph, is colored either blue or
green. Then H includes a monochromatic K. O

Proof. Let Wy := V. At stage N we have vertex-sets

Wo D Wy D---DW; D---D Wy,

N—-1

each infinite. Moreover, we have vertices (uj) =0

with u; € W; \ Wj1, so that each edge-set
Ej = {vw|veW}

is monochromatic.

Continue the induction by picking an arbitrary ver-
tex uy € Wy. Since Wy~{uy} is infinite, it in-
cludes an infinite set of vertices v so that {Vun},
is monochromatic. Define Wy to be this infinite

set of vertices.

An infinite monochromatic sequence. Each of
the sets Eg, Eq, ... is either blue or green. Thus there
is a subsequence N1 < Ny < ... so that, WLOG, each
En; is green. The consequence is that the complete

graph with vertex-set (u Nj)_?il has every edge green. 4

lc: Observation.  Infinite Ramsey’s Thm implies the
Finite Ramsey's Thm, by a compactness argument. ¢

Proof. Consider K, the complete graph with vertex-
set V={1,2,...}.

FTSOC suppose the, say, 5** Ramsey number were
not finite. Then for each n, there would exist a blue-
green coloring of the edges on vertex-set {1,...,n}
—call this colored graph H,— so that H,, does not in-
clude a monochromatic copy of Ks.

Interpret H,, as an edge-coloring of K: Color plum
each edge that is not between vertices [1..n]. (Le, for
posints u < v: If v > n then color edge v plum.)

We now have a sequence Hi,Hs, Hs, ... of
{blue, green, plum} colorings of K. Since each edge

Infinite Ramsey’s Theorem
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of Ky has only finitely many |[three| possible col-
ors, the sequence of colorings has a convergent sub-
sequence (Hy;)?2,. The coloring obtained in the
limit, an edge-coloring of K, has mo plum. But
oo-Ramsey’s-Thm guarantees a monochromatic copy
of Koo; WLOG it is green. Lettingu; < ug < ... < us
be its first 5 vertices, this green Ky was already a sub-
graph of Hy,. 3¢

2a: Two-variable R(). For posints b,g, let R(b, g) be
the smallest M st. each blue-green-coloring of Kjs has
either a blue Ky, or a green Kg. So R(n) = R(n,n).
Evidently, R(b,1) = 1 and R(b,2) = b; and this
holds symmetrically, since R(b,g) = R(g,b). O

2b: Theorem. For all b,g € Z,

# R(bg) < R(b-1,g) + R(b.g-1). 0

Proof. Let M = RhS(x). Fix a vertex w; it has M —1
edges, so has either at least R(b—1, g) blue-edges, or
at least R(b, g—1) green-edges. WLOG

- Recall bV (w) is the set of ver-

|M’ (W)’ > R(b 1, g)' {tices blucgco)nnected to w.
If the graph induced by 0V (w) has a green Kg, then
DONE. Else, the induced graph admits a blue K,_1
which, together with vertex w, induces a blue K. ¢

2c: Ezxercise: Coloring with p colors, let R(n1,...,n,)
be the smallest M st. each p-coloring, H, of Kjs has
an index j for which H admits a Kj,; with all edges
the j*-color. Ezer-E1: What is the p-color analog of
Thm 2b? [Hint: Don’t jump to conclusions.] L]
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Examples from Bona’s text

In class we proved R(3)=6. In this instance (2bx) is
sharp, as

R(3,3) < 22R(3,2) = 2-3 = 6.
Using Thm 2b again,

R(3,4) < R(2,4)+R(3,3) = 4+6 = 10.

3a: Claim: R(3,4) = 9. O

Pfof R(3,4)<9. FTSOC, suppose H is a blue-green-
coloring of Kg with no blue triangle, nor green Kj.
Could some vertex w have bDeg(w) > 47 Since
no blue triangle, no pair of vertices in bV (w) has a
blue-edge; but then H1/(w) induces a green Ky. 3¢
Could every w have bDeg(w) = 37 Then the blue-
degree-sum is 3 -9, which is odd. But this degree-sum
must also equal twice the number of blue edges. >
So there ezists a vertex w with bDeg(w) < 2, hence

lgV(w)| = 8—2 = 6.

Since R(3) = 6, and ¢gV(w) cannot have a blue tri-
angle, it must have a green triangle, G. But then
G U{w} is a green Kjy. ¢

Pfof R(3,4) > 8. On vertex-set V := [0..8), let =
and @ and & each operate mod 8.
Connect vertices j,k € V by blue IFF k&j is either

3, producing a blue octagon, Or

/. producing four center-crossing blue edges. ¢

But no triple of numbers from {7, / } has &-sum equal
to zero. Hence there is no blue triangle.

Color green the remaining edges, i.e k&j € {1, 2}.
Difference=2 makes green square {0,2,4,6}, and
square {1,3,5,7}. And difference=7 make a green
octagon {0,1,2,3,4,5,6,7}.

FTSOContradiction, suppose G is a green K4 sub-
graph. It can’t have three vertices in one square
[diff=/], so G has two vertices in each square, say {0, 2}
and {v,w}. But v must differ from each of 0,2 by 1

St Ditto, w = 1. 3¢

or 2;s0v

Examples from Bona’s text
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The result now allows, courtesy Thm 2b, that

R(4,4) < 27R(3,4) = 18.
3b: Claim: R(4,4) = 18. O

Proof. To show R(4,4) > 17, we exhibit a blue-green-
coloring of K17 with no monochromatic Kjy.

On vertex-set V := {0,1,...,8,-8,-7,...,-1}, let
=, @, © and (-) each operate mod 17. Blue-connect
J,k € V IFF k&j is a mod-17 QR [Quadratic Residue].

x| (x%) x| (2%)

+1 1 +5 8

3c: +2 4 +6 2
+3] 8 7 -2

+4 | 18| -4

Thus QR = {£1, +2, +4, £8}; so our edge-lengths are
{1,2,/,8}. And NQR = {£3,+5,46,+7}, giving
rise to the green edges. Multiplying the vertices by
a non-QR element, will exchange the blue and green
edges [using that mult distrbutes-over addition]. So: It suf-
fices to show that there is no blue Kj.

Number Thy. FTSOC, suppose a,b,c,d € V are
the vertices of a blue Ky. WLOG a=0; replace vertex
x by zca. WLOG b=1, replace each = by (z/b). [The
mapping « — (x/b) is color-preserving, since b is a QR]

The vertices are now {0,1,c,d}.

Vertex ¢ must differ from 0 and 1 by values in
{1,2,/,8}; so cis 2 or-1; WLOG c=2. Vertex d,
relative to vertices 1 and 2, must be 3 or 0; but 0 is
taken. Our supposedly-blue Ky is {0,1,2,3}.

Alas, edge 03 is green. 3¢ ¢
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van der Waerden’s thm

A shift s € Z and a gap g € Z, give rise to finite
and infinite arithmetic progressions:

A, (s,g) = {s+jg|jecl0.n)};
M (s,g) = Fo(s,g) = {s+jg|jcZ}.

Use AP, to refer to some n-term A.P, when the shift
and gap are irrelevant.

4a: van der Waerden theorem. For each posint n, there
is a finite M so that each 2-coloring (of the elements)
of APy, produces a monochromatic AP, . O

The smallest such M is written W(n). For example,
W(3) =9. If p many colors are allowed, then we
write W, (n) for the minimum M.

The infinite analog of vdW thm fails, as shown next.

4b: Obs. There exists a 2-coloring of 7Z which admits
no monochromatic sub-AP.. O

Proof. ~ We produce a coloring for which the only
monochromatic arithmetic-progs are finite.

Take a surjection n — (sp,gn) from Z,—»ZxZ,,
and let A(n) := AP (Sn, 8n)-

We color Z in stages. At stage n: Paint one blue and
one green, the two posints in A(n) which are closest to
zero, and were not yet colored. Then paint one blue
and one green, the two negints in A(n) which are clos-
est to zero, and were not yet colored.

Send n_"co. Finally, color arbitrarily the remaining
uncolored integers. ¢
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Hypergraphs
Let P4(V) be the collection of cardinality-4 subsets
of V; so it has ('X') many members. A “4-hypergraph
on V” is a pair H := (V,E) where E C P4(V) is the
set of hyper-edges of H. This cardinality, 4, is called
the rank of H.

A subset V' C V determines a sub-hypergraph
H" == (V',E) of H, where

¥ E = {SeE|[ScV'.

By the way , the “complete 4-hypergraph on V” is
(V,P4(V)). Setting M := |V|, we'll use Kﬁ to refer

to this hypergraph.  [So Kﬁ) is our usual Kyy.|

Sa: Defn. Fix a colorset C := {blue, green}.
A C-coloring of H
is a map f:E—C. Given a subset V' C V,
let £|y,, mean the coloring f|p, defined by (¥).

Consider a rank p € [2..00) and posint n. Suppose
there is a posint M st:

For each C-coloring of the complete hypergraph

K<AZ>, there is a cardinality-n subset W C [1 .. M]
so that coloring f |y, is constant.

(IOWords, this edge-colored K§(/’[> admits a monochro-
matic KT<{J>.) The smallest such M is the hypergraph
Ramsey number R (n). O

5b: Hypergraph Ramsey Thm.  Fix a rank p € Z.

Then

iz FEach coloring of /@? admits a monochromatic
Kég) -subgraph.

ii: Each posint n: Ramsey number R')(n) is finite.)

Proof of (ii). The analogous compactness argument
of (1c) works here. ¢

Hypergraphs
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Proof of (i). We induct on p. We’ll show the induction
for p=>5, assuming the p=4 case.

Our vertex set is V := {1,2,...}, and we are given
a coloring f:P5(V)—C. Suppose we could find an in-
finite subset W C V and a color map g:P4(W)—C
with this property:

: For each S € P4(W) and each y € W with
"y > Max(S), the color £f(S U {y}) equals g(5).

The rank=4 case of (5b) asserts there is an co-subset
X C W so that

Our g-coloring is constant on P4(X); say blue.

Given a T € P5(X), write it as T' = {wy, ..
with w; < ... <ws. By (), then,

£(T) = g({wi,...,wa}) = blue.

. ,w4,w5}

Hence f is constant blue on P5(X).

Building W. We’ll inductively construct vertices
wy < wo < ... and infinite V-subsets Y1 D Yy D ---.
Our W will be {w1,ws,ws,...}.

Let w; =1, I := {w;} and Y} = [2..00).

At Stacek: We have I = {wi,...,wi}, and a

partially-defined g(), defined on P4(I). We have an
infinite vertex-set Yy, such that:

1t Our wg <y, for each y € Y.

it: For each S € P4(Ij), and each y € Yy, the color
f(SU{y}) equals g(S).

For STAGE [k+1], define wg41
temporary set

= Min(Yg), and
Jo = Y~ A{wgi1}-

Let S1,S52,...,5r be some enumeration of those
cardinality-4 subsets of I that own wg4;.

There is a color, say, blue, and an infinite set of
y € Jo, so that £(S1 U{y}) is blue. Extend g() by
defining ¢(S1) := blue. Use Jp for this set of points y.

There is a color, say, green, and an infinite set of
y € Ji, so that £(S2 U {y}) is green. Define ¢g(S2) =
green. Use Jy for this set of points y.

Continue, until you have shrunk to Jy. Lastly, let
Y1 = JL. ¢
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5¢: Defn.The Erdds-Szekeres number ES(n), is the
smallest posint M so that each collection of M points
in the plane with no three colinear, has a subset of n
points which form a conver n-gon. [Caveat: There are
at least two different results called the Erd8s-Szekeres thm.] [

5d: ES-Theorem. For the Erdés-Szekeres number,

ES(n) < R® (n,n)= M. O

Proof. ~ With vertex-set [1..M], construct a Cyan-

-coloring of KE? > M
u<v<w in [1..M], color the {u,v,w}-edge Cyan if
the u—v—w—u traversal is ClockWise [CW]; other-
wise, paint the {u,v,w}-edge, since its traver-
sal is Anti-clockWise [111].

By hypothesis, there exists an n-set S C [1 .. M], so
that all the K<53>—edges are, say, CW.

as follows: For each triple

Convex n-gon. FTSOC, suppose the n points of S
do not form a convex m-gon. Then some point P€S
is in the convex-hull of S. So there are distinct points
u<v<w in S, with an S-point P € Hull({u,v,w}).
Recall u—=v—w is CW. We must have P > u; else

P—u—w is
must . . .
And P > v; else u—P—v is . Continuing,
must
P > w; else v>P—w is . But now, u—»w—P
is VLo ¢
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§A Hales-Jewett

The Statement

Suppose we have a finite alphabet A = {a,b,...}
and we fix a length h. A degree-® polynomial
f(z1,...,29) over A¥P is a word

6: fE[ALl{:Bl,...,x@}]Xh

where each variable x; occurs at least once in f. We
evaluate f() at a ©-tuple of A-letters by plugging
them in for the ® variables. The range of this polyno-
mial is a subset of A*® and has |A[® members. This
range is called a ©-dimensional (affine) subspace.
The RHS of (6) implies

h
|” many

There are at most [|A] + D
©-dimensional subspaces of AP

By the way, a 1-dimensional subspace is also called an
(afﬁne) line.

The Hales-Jewett theorem states that given an al-
phabet size o := |A|, a number p of colors and a
dimension ©:

There is a function h = h(®, i, ) so that
each p-coloring (coloring by y many colors) of
the set of words AP will have a monochro-
matic ®-dimensional subspace.

One cannot guarantee the stronger statement that
there is a monochromatic subspace parallel to the co-
ordinate axes ie. where each variable in the word of (6)
occurs exactly once. This is already false in the D=1
case: Let the color of a word in {0, 1}>® be the mod-2
sum of its bits. Then a line consists of a pair of h-
words 0w and ulw differing in a single bit-position
—which therefore have different colors.

Filename: Problems/ramseylike~.latex
As of:  Tuesday 17Apr2018. Typeset: 24Apr2018 at 10:21.

Filename: Problems/ramseylike~.latex



