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Abstract: Ramsey-like theorems. Hales-Jewett.

In this note, a coloring is an edge-coloring unless
specified otherwise.

Entrance. (jk: Jeudi, 26 mars, 1985) Let Kn denote
the complete graph on n vertices. Let R(n) denote
the nth Ramsey number , that is, the smallest M
such that if one colors each edge of KM either blue or
green, then there must exist a monochromatic sub-
graph isomorphic to Kn.

Notation. For vertex w in a blue-green graph, let
bV(w) be the set of vertices connected to w by a
blue edge; use gV(w) for those connected to w by
green edges. We thus have vertex degrees

bDeg(w) :=
∣∣bV(w)

∣∣ and gDeg(w) :=
∣∣gV(w)

∣∣.
Hence bDeg(w) + gDeg(w) = Deg(w).

1a: Theorem. For n = 1, 2, 3, . . .,

R(n+1) 6 2
[
1 + [n−1]R(n)

]
.1a′: ♦

Proof. With M := RhS(1a′), let V denote the vertex
set of KM . FTSOC, assume we have edge-colored KM
so that it has no monochromatic copy of Kn+1.

Pick a u0 ∈ V. WLOGenerality at least half of the
edges from u0 are blue. Letting B0 := bDeg(u0), we
have

B0 >
⌈M−1

2

⌉
note
==== 1 + [n−1] · R(n) .∗:

Building a blue complete-subgraph. Pick a ver-
tex u1 ∈ bV(u0). The set bV(u0) r {u1} can have at
most R(n) − 1 vertices not belonging to bV(u1). If
otherwise, then there would be a copy of KR(n) in our
graph, disjoint from u0 and u1, such that each vertex
in this copy was connected to u0 by a blue edge and
to u1 by a green edge. This copy would, by hypothe-
sis, contain a monochromatic copy –call it H– of Kn.
Were H blue, then H t {u0} is a blue Kn+1. Else, H
is green, so H t{u1} is a green Kn+1. Either is a # .

Consequently the set bV(u0) ∩ bV(u1) has at least∣∣bV(u0)
∣∣− ∣∣{u1}

∣∣− [R(n)− 1
] note
==== B0 −R(n)

many vertices. Pick some u2 in bV(u0)∩ bV(u1). The
same argument shows bV(u0) ∩ bV(u1) ∩ bV(u2) has
at least [

B0 −R(n)
]
−R(n)

many vertices.
Continue. At stage n−1 we will have chosen dis-

tinct vertices u0,u1, . . . ,un−1. Further, the intersec-
tion of their blue vertex-sets will satisfy∣∣∣bV(u0) ∩ bV(u1) ∩ . . . ∩ bV(un−1)

∣∣∣ > B0 − [n−1]R(n)

and hence be non-empty, by (∗). Picking a ver-
tex un in this intersection, now every pair of vertices
in {u0,u1, . . . ,un} is connected by a blue edge. # �

Remark. Values R(1), R(2) and R(3) are 1, 2 and 6
respectively. Using the above theorem, easily

R(n+1) 6 [n! · 2n] . �

More colors. If we allow µ ∈ Z+ many col-
ors, then we get a corresponding sequence of Ramsey
numbers Rµ(n) for n = 1, 2, . . . . Here, R1(n) = n,
and R2(·) is another name for R(·).

For each µ>1, lump the µ colors into two super-
colors consisting each of at most h := dµ/2e colors.
Applying R(·) to these two supercolors, implies that

Rµ(n) 6 R
(
Rh(n)

)
6 R

(
R(. . .R(n) . . . )

)
,

where the RhS has
⌈
log2(µ)

⌉
occurrences of R(·). �
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Infinite Ramsey’s Theorem

(jk, Feb1989) Let K∞ denote the complete graph on
denumerably many vertices.

1b: Infinite Ramsey’s Theorem. Each edge uv of
H = (((V,E))), a K∞ graph, is colored either blue or
green. Then H includes a monochromatic K∞. ♦

Proof. Let W0 := V. At stage N we have vertex-sets

W0 ⊃ W1 ⊃ · · · ⊃ Wj ⊃ · · · ⊃ WN ,

each infinite. Moreover, we have vertices
(((
uj
)))N−1
j=0 ,

with uj ∈Wj rWj+1, so that each edge-set

Ej :=
{
vuj

∣∣ v ∈Wj+1
}

is monochromatic.
Continue the induction by picking an arbitrary ver-

tex uN ∈WN . Since WNr{uN} is infinite, it in-
cludes an infinite set of vertices v so that

{
vuN

}
v

is monochromatic. Define WN+1 to be this infinite
set of vertices.

An infinite monochromatic sequence. Each of
the sets E0,E1, . . . is either blue or green. Thus there
is a subsequence N1 < N2 < . . . so that, WLOG, each
ENj is green. The consequence is that the complete
graph with vertex-set

(((
uNj

)))∞
j=1 has every edge green.�

1c: Observation. Infinite Ramsey’s Thm implies the
Finite Ramsey’s Thm, by a compactness argument. ♦

Proof. Consider K∞, the complete graph with vertex-
set V = {1, 2, . . . }.

FTSOC suppose the, say, 5th Ramsey number were
not finite. Then for each n, there would exist a blue-
green coloring of the edges on vertex-set {1, . . . , n}
–call this colored graph Hn– so that Hn does not in-
clude a monochromatic copy of K5.

Interpret Hn as an edge-coloring of K∞: Color plum
each edge that is not between vertices [1 .. n]. (I.e, for
posints u < v: If v > n then color edge uv plum.)

We now have a sequence H1,H2,H3, . . . of
{blue, green, plum} colorings of K∞. Since each edge

of K∞ has only finitely many [three] possible col-
ors, the sequence of colorings has a convergent sub-
sequence

(((
Hnj

)))∞
j=1. The coloring obtained in the

limit, an edge-coloring of K∞, has no plum. But
∞-Ramsey’s-Thm guarantees a monochromatic copy
of K∞; WLOG it is green. Letting u1 < u2 < . . . < u5

be its first 5 vertices, this green K5 was already a sub-
graph of Hu5 . #

2a: Two-variable R(). For posints b,g, let R(b, g) be
the smallestM st. each blue-green-coloring of KM has
either a blue Kb or a green Kg. So R(n) = R(n, n).

Evidently, R(b, 1) = 1 and R(b, 2) = b; and this
holds symmetrically, since R(b, g) = R(g, b). �

2b: Theorem. For all b,g ∈ Z+,

R(b, g) 6 R(b−1, g) + R(b, g−1) .∗: ♦

Proof. Let M := RhS(∗). Fix a vertex w; it has M−1
edges, so has either at least R(b−1, g) blue-edges, or
at least R(b, g−1) green-edges. WLOG∣∣bV(w)

∣∣ > R(b−1, g). [Recall bV(w) is the set of ver-
tices blue-connected to w.

]
If the graph induced by bV(w) has a green Kg, then
done. Else, the induced graph admits a blue Kb−1
which, together with vertex w, induces a blue Kb. �

2c: Exercise:Coloring with µ colors, let R(n1, . . . , nµ)
be the smallest M st. each µ-coloring, H, of KM has
an index j for which H admits a Knj with all edges
the jth -color. Exer -E1: What is the µ-color analog of
Thm 2b? [Hint: Don’t jump to conclusions.] �
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Examples from Bona’s text

In class we proved R(3)=6. In this instance (2b∗) is
sharp, as

R(3, 3) 6 2·R(3, 2) = 2 · 3 = 6 .

Using Thm 2b again,

R(3, 4) 6 R(2, 4) +R(3, 3) = 4 + 6 = 10 .

3a: Claim: R(3, 4) = 9. ♦

Pf of R(3, 4)6 9. FTSOC, suppose H is a blue-green-
coloring of K9 with no blue triangle, nor green K4.

Could some vertex w have bDeg(w) > 4? Since
no blue triangle, no pair of vertices in bV(w) has a
blue-edge; but then bV(w) induces a green K4. #

Could every w have bDeg(w) = 3? Then the blue-
degree-sum is 3 · 9, which is odd. But this degree-sum
must also equal twice the number of blue edges. #

So there exists a vertex w with bDeg(w) 6 2, hence∣∣gV(w)
∣∣ > 8− 2 = 6 .

Since R(3) = 6, and gV(w) cannot have a blue tri-
angle, it must have a green triangle, G . But then
G t {w} is a green K4. �

Pf of R(3, 4) > 8. On vertex-set V := [0 .. 8), let ≡
and ⊕ and 	 each operate mod 8.

Connect vertices j,k ∈ V by blue IFF k	j is either

3 , producing a blue octagon, or
4 , producing four center-crossing blue edges. �

But no triple of numbers from {3 , 4} has ⊕-sum equal
to zero. Hence there is no blue triangle.

Color green the remaining edges, i.e k	j ∈ {1 , 2}.
Difference=2 makes green square {0, 2, 4, 6}, and
square {1, 3, 5, 7}. And difference=1 make a green
octagon {0, 1, 2, 3, 4, 5, 6, 7}.

FTSOContradiction, suppose G is a green K4 sub-
graph. It can’t have three vertices in one square
[diff=4 ], so G has two vertices in each square, say {0, 2}
and {v,w}. But v must differ from each of 0,2 by 1

or 2 ; so v
must
====1. Ditto, w = 1. #

The result now allows, courtesy Thm 2b, that

R(4, 4) 6 2·R(3, 4) = 18 .

3b: Claim: R(4, 4) = 18. ♦

Proof. To show R(4, 4) > 17, we exhibit a blue-green-
coloring of K17 with no monochromatic K4.

On vertex-set V := {0, 1, . . . , 8, 8, 7, . . . , 1}, let
≡, ⊕, 	 and 〈·〉 each operate mod 17. Blue-connect
j,k ∈ V IFF k	j is a mod-17 QR [Quadratic Residue].

x
〈
x2
〉

x
〈
x2
〉

±1 1 ±5 8

±2 4 ±6 2

±3 8 ±7 2

±4 1 ±8 4

3c:

Thus QR = {±1,±2,±4,±8}; so our edge-lengths are
{1 , 2 , 4 , 8}. And NQR = {±3,±5,±6,±7}, giving
rise to the green edges. Multiplying the vertices by
a non-QR element, will exchange the blue and green
edges [using that mult distrbutes-over addition]. So: It suf-
fices to show that there is no blue K4.

Number Thy. FTSOC, suppose a,b,c,d ∈ V are
the vertices of a blue K4. WLOG a=0; replace vertex
x by x	a. WLOG b=1; replace each x by 〈x/b〉. [The
mapping x 7→ 〈x/b〉 is color-preserving, since b is a QR.]

The vertices are now {0, 1, c,d}.
Vertex c must differ from 0 and 1 by values in
{1 , 2 , 4 , 8}; so c is 2 or 1; WLOG c=2. Vertex d,
relative to vertices 1 and 2, must be 3 or 0; but 0 is
taken. Our supposedly-blue K4 is {0, 1, 2, 3}.

Alas, edge 0 3 is green. # �
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van der Waerden’s thm
A shift s ∈ Z and a gap g ∈ Z+, give rise to finite
and infinite arithmetic progressions:

APn(s, g) :=
{
s+ jg

∣∣ j ∈ [0 .. n)
}
;

AP(s, g) = AP∞(s, g) :=
{
s+ jg

∣∣ j ∈ Z
}
.

Use APn to refer to some n-term A.P, when the shift
and gap are irrelevant.

4a: van derWaerden theorem. For each posint n, there
is a finite M so that each 2-coloring (of the elements)
of APM , produces a monochromatic APn. ♦

The smallest suchM is writtenW(n). For example,
W(3) = 9. If µ many colors are allowed, then we
write Wµ(n) for the minimum M .

The infinite analog of vdW thm fails, as shown next.

4b: Obs. There exists a 2-coloring of Z which admits
no monochromatic sub-AP∞. ♦

Proof. We produce a coloring for which the only
monochromatic arithmetic-progs are finite.

Take a surjection n 7→ (((sn, gn))) from Z+�Z×Z+,
and let A(n) := AP∞(sn, gn).

We color Z in stages. At stage n: Paint one blue and
one green, the two posints in A(n) which are closest to
zero, and were not yet colored. Then paint one blue
and one green, the two negints in A(n) which are clos-
est to zero, and were not yet colored.

Send n↗∞. Finally, color arbitrarily the remaining
uncolored integers. �
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Hypergraphs

Let P4(V) be the collection of cardinality-4 subsets
of V; so it has

(|V|
4

)
many members. A “4-hypergraph

on V” is a pair H := (((V,E))) where E ⊂ P4(V) is the
set of hyper-edges of H. This cardinality, 4, is called
the rank of H.

A subset V ′ ⊂ V determines a sub-hypergraph
H ′ := (((V ′,E′))) of H, where

E′ :=
{
S ∈ E

∣∣ S ⊂ V ′} .U:

By the way , the “complete 4-hypergraph on V” is(((
V,P4(V)

)))
. Setting M := |V|, we’ll use K〈4〉M to refer

to this hypergraph. [So K〈2〉M is our usual KM .]

5a: Defn. Fix a colorset C := {blue, green}.

A C-coloring of H

is a map f :E→C. Given a subset V ′ ⊂ V,

let f�V ′ mean the coloring f�E′ defined by (U).

Consider a rank ρ ∈ [2 ..∞) and posint n. Suppose
there is a posint M st:

For each C-coloring of the complete hypergraph
K〈ρ〉M , there is a cardinality-n subset W ⊂ [1 ..M ]
so that coloring f�W is constant.

(IOWords, this edge-colored K〈ρ〉M admits a monochro-
matic K〈ρ〉n .) The smallest such M is the hypergraph
Ramsey number R〈ρ〉(n). �

5b: Hypergraph Ramsey Thm. Fix a rank ρ ∈ Z+.
Then

i: Each coloring of K〈ρ〉∞ admits a monochromatic
K〈ρ〉∞ -subgraph.

ii: Each posint n: Ramsey number R〈ρ〉(n) is finite.♦

Proof of (ii). The analogous compactness argument
of (1c) works here. �

Proof of (i).We induct on ρ. We’ll show the induction
for ρ=5, assuming the ρ=4 case.

Our vertex set is V := {1, 2, . . .}, and we are given
a coloring f :P5(V)→C. Suppose we could find an in-
finite subset W ⊂ V and a color map g:P4(W)→C
with this property:

For each S ∈ P4(W) and each y ∈ W with
y > Max(S), the color f(S t {y}) equals g(S).†:

The rank=4 case of (5b) asserts there is an ∞-subset
X ⊂W so that

Our g-coloring is constant on P4(X); say blue.

Given a T ∈ P5(X), write it as T = {w1, . . . , w4, w5}
with w1 < . . . < w5. By (†), then,

f
(
T
)
= g

(
{w1, . . . , w4}

)
= blue .

Hence f is constant blue on P5(X).

Building W. We’ll inductively construct vertices
w1 < w2 < . . . and infinite V-subsets Y1 ⊃ Y2 ⊃ · · · .
Our W will be {w1, w2, w3, . . .}.

Let w1 := 1, I1 := {w1} and Y1 := [2 ..∞).
At Stage k: We have Ik := {w1, . . . , wk}, and a

partially-defined g(), defined on P4(Ik). We have an
infinite vertex-set Yk, such that:

i : Our wk < y, for each y ∈ Yk.

ii : For each S ∈ P4(Ik), and each y ∈ Yk, the color
f(S t {y}) equals g(S).

For Stage [k+1], define wk+1 := Min(Yk), and
temporary set

J0 := Yk r {wk+1} .

Let S1, S2, . . . , SL be some enumeration of those
cardinality-4 subsets of Ik+1 that own wk+1.

There is a color, say, blue, and an infinite set of
y ∈ J0, so that f(S1 t {y}) is blue. Extend g() by
defining g(S1) := blue. Use J1 for this set of points y.

There is a color, say, green, and an infinite set of
y ∈ J1, so that f(S2 t {y}) is green. Define g(S2) :=
green. Use J2 for this set of points y.

Continue, until you have shrunk to JL. Lastly, let
Yk+1 := JL. �
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5c: Defn.The Erdös-Szekeres number ES(n), is the
smallest posintM so that each collection ofM points
in the plane with no three colinear, has a subset of n
points which form a convex n-gon. [Caveat: There are
at least two different results called the Erdős-Szekeres thm.] �

5d: ES-Theorem. For the Erdős-Szekeres number,

ES(n) 6 R〈3〉(n, n) =:M. ♦

Proof. With vertex-set [1 ..M ], construct a Cyan-
Amber-coloring of K〈3〉[1 ..M ], as follows: For each triple
u<v<w in [1 ..M ], color the {u,v,w}-edge Cyan if
the u→v→w→u traversal is ClockWise [CW]; other-
wise, paint Amber the {u,v,w}-edge, since its traver-
sal is Anti-clockWise [AW].

By hypothesis, there exists an n-set S ⊂ [1 ..M ], so
that all the K〈3〉S -edges are, say, CW.

Convex n-gon. FTSOC, suppose the n points of S
do not form a convex n-gon. Then some point P∈S
is in the convex-hull of S. So there are distinct points
u<v<w in S, with an S-point P ∈ Hull

(
{u,v,w}

)
.

Recall u→v→w is CW. We must have P > u; else
P→u→w is AW.

And P
must
> v; else u→P→v is AW. Continuing,

P
must
> w; else v→P→w is AW. But now, u→w→P

is AW. # �
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§A Hales-Jewett

The Statement

Suppose we have a finite alphabet A = {a, b, . . . }
and we fix a length h. A degree-D polynomial
f(x1, . . . , xD) over A×h is a word

f ∈
[
A t {x1, . . . , xD}

]×h6:

where each variable xj occurs at least once in f . We
evaluate f() at a D-tuple of A-letters by plugging
them in for the D variables. The range of this polyno-
mial is a subset of A×h and has |A|D members. This
range is called a D-dimensional (affine) subspace.
The RHS of (6) implies

There are at most
[
|A| + D

]h many
D-dimensional subspaces of A×h.

7:

By the way, a 1-dimensional subspace is also called an
(affine) line.

The Hales-Jewett theorem states that given an al-
phabet size α := |A|, a number µ of colors and a
dimension D:

There is a function h = h(D, µ, α) so that
each µ-coloring (coloring by µ many colors) of
the set of words A×h will have a monochro-
matic D-dimensional subspace.

One cannot guarantee the stronger statement that
there is a monochromatic subspace parallel to the co-
ordinate axes ie. where each variable in the word of (6)
occurs exactly once. This is already false in the D=1
case: Let the color of a word in {0, 1}×h be the mod-2
sum of its bits. Then a line consists of a pair of h-
words u0w and u1w differing in a single bit-position
—which therefore have different colors.
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